The Dynamic Distribution of Porcine Microbiota across Different Ages and Gastrointestinal Tract Segments
نویسندگان
چکیده
Metagenome of gut microbes has been implicated in metabolism, immunity, and health maintenance of its host. However, in most of previous studies, the microbiota was sampled from feces instead of gastrointestinal (GI) tract. In this study, we compared the microbial populations from feces at four different developmental stages and contents of four intestinal segments at maturity to examine the dynamic shift of microbiota in pigs and investigated whether adult porcine fecal samples could be used to represent samples of the GI tract. Analysis results revealed that the ratio of Firmicutes to Bacteroidetes from the feces of the older pigs (2-, 3-, 6- month) were 10 times higher compared to those from piglets (1-month). As the pigs matured, so did it seem that the composition of microbiome became more stable in feces. In adult pigs, there were significant differences in microbial profiles between the contents of the small intestine and large intestine. The dominant genera in the small intestine belonged to aerobe or facultative anaerobe categories, whereas the main genera in the large intestine were all anaerobes. Compared to the GI tract, the composition of microbiome was quite different in feces. The microbial profile in large intestine was more similar to feces than those in the small intestine, with the similarity of 0.75 and 0.38 on average, respectively. Microbial functions, predicted by metagenome profiles, showed the enrichment associated with metabolism pathway and metabolic disease in large intestine and feces while higher abundance of infectious disease, immune function disease, and cancer in small intestine. Fecal microbes also showed enriched function in metabolic pathways compared to microbes from pooled gut contents. Our study extended the understanding of dynamic shift of gut microbes during pig growth and also characterized the profiles of bacterial communities across GI tracts of mature pigs.
منابع مشابه
Changes in the Swine Gut Microbiota in Response to Porcine Epidemic Diarrhea Infection
The gastrointestinal tract of mammals is a complex ecosystem with distinct environments and comprises hundreds of different types of bacterial cells. The gut microbiota may play a critical role in the gut health of the host. We herein attempted to identify a microbiota shift that may be affected by porcine epidemic diarrhea (PED). We observed significant differences in microbiota between the co...
متن کاملShort Communication Changes in the Swine Gut Microbiota in Response to Porcine Epidemic Diarrhea Infection
The gastrointestinal tract of mammals is a complex ecosystem with distinct environments and comprises hundreds of different types of bacterial cells. The gut microbiota may play a critical role in the gut health of the host. We herein attempted to identify a microbiota shift that may be affected by porcine epidemic diarrhea (PED). We observed significant differences in microbiota between the co...
متن کاملSpatial Heterogeneity of Gut Microbial Composition along the Gastrointestinal Tract in Natural Populations of House Mice
There is a growing appreciation of the role of gut microbial communities in host biology. However, the nature of variation in microbial communities among different segments of the gastrointestinal (GI) tract is not well understood. Here, we describe microbial communities from ten different segments of the GI tract (mouth, esophagus, stomach, duodenum, ileum, proximal cecum, distal cecum, colon,...
متن کاملFecal Microbiota Transplantation in Liver Diseases and Recent Developments
Introduction: The intestine, as an important part of the human gastrointestinal tract, provides a favorable milieu for the growth and development of a diverse and large population (approximately 1000 species) of bacteria. Currently, the presence of a cohesive relationship between intestinal bacteria and the host is being well studied and identified. According to the available scientific evidenc...
متن کاملExpression of heat shock proteins 27 and 72 correlates with specific commensal microbes in different regions of porcine gastrointestinal tract.
The gastrointestinal (GI) tract of mammals is inhabited by trillions of microorganisms, resulting in exceedingly complex networking. The interaction between distinct bacterial species and the host immune system is essential in maintaining homeostasis in the gut ecosystem. For instance, the gut commensal microbiota dictates intestinal mucosa maturation and its abundant immune components, such as...
متن کامل